On the Existence of the Anion Trichloro(η -cyclopentadienyl)titanate(1–). Crystal Structure of the Salt [Co(C₅H₅)₂][Ti(C₅H₅)Cl₃][†]

David L. Hughes, Manuel Jimenez-Tenorio, and G. Jeffery Leigh*

AFRC IPSR Nitrogen Fixation Laboratory, University of Sussex, Brighton, BN1 9RQ

We have isolated, and characterised by elemental and X-ray crystal structure analysis, and e.s.r. and n.m.r. spectroscopy, the salt $[Co(C_5H_5)_2][Ti(C_5H_5)CI_3]$. The results show that the ion $[Ti(C_5H_5)CI_3]^-$ is a stable species of not unexpected properties, despite an earlier report that it readily loses chloride. This represents the first structural analysis of a (cyclopentadienyl)trihalogenotitanate(1-) species.

We have recently described the isolation of the complex $[TiLCl_3]^- [L = tris(pyrazolyl)borate]$, and remarked upon the apparent non-existence of an analogue $[Ti(C_5H_5)Cl_3]^{-1}$ In reductions of $[Ti(C_5H_5)Cl_3]$ which might be expected to yield $[Ti(C_5H_5)Cl_3]^-$ the product generally contains $Ti(C_5H_5)Cl_2$, either as a dimer or as an adduct with a Lewis base. Evidently one chloride in $[Ti(C_5H_5)Cl_3]^-$ is labile, and this inference is supported by an earlier e.s.r. analysis which shows that $[Ti(C_5H_5)Cl_3]^-$ in methyltetrahydrofuran irradiated at 77 K with ⁶⁰Co γ -rays produces a species {supposed to be $[Ti(C_5H_5)Cl_3]^-$ } which, upon annealing at some higher temperature, produces $[Ti(C_5H_5)Cl_2]$.² The e.s.r. spectrum of the latter species was in agreement with literature data, but the spectrum of $[Ti(C_5H_5)Cl_3]^-$ was considered to be uninterpretable.²

Much more recently, and without reference to these data, the synthesis of some complexes $[Co(C_5H_5)_2][M(C_5H_4Me)Cl_3]$ (M = Ti or V) and the e.s.r. spectrum of the former titanium complex were reported.³ The reported spectrum is quite different from that attributed to $[Ti(C_5H_5)Cl_3]^-$, and the cyclic voltammograms of the titanium derivative were consistent with the presence in solution in CH_2Cl_2 of $[Co(C_5H_5)2]^+$ and of an oxidisable counter ion; the reduction of $[Ti(C_5H_4Me)Cl_3]$ is reversible. These results argue for a significant stability for $[Ti(C_5H_4Me)Cl_3]^-$ and are in direct contradiction to the earlier report. We have carried out experiments to resolve this confusion.

Results and Discussion

Using the method of Morse *et al.*,³ we have prepared a complex analysing for $[Co(C_5H_5)_2][Ti(C_5H_5)Cl_3]$ by the reaction of $[Co(C_5H_5)_2]$ with $[Ti(C_5H_5)Cl_3]$ in dichloromethane. Recrystallisation from CH_2Cl_2 -hexane yielded dark green crystals which were subjected to X-ray crystal structure analysis.

The structure shows clearly the presence of both [Co- $(C_5H_5)_2$]⁺ and [Ti(C_5H_5)Cl₃]⁻ as displayed in the Figure. Clearly, [Ti(C_5H_5)Cl₃]⁻ has considerable stability in the solid state and in solution, consistent with the findings of Morse *et al.*³ and in disagreement with Symons and Mishra.²

Description of Crystal Structure.—The crystals are composed of discrete $Ti(C_5H_5)Cl_3$ and $Co(C_5H_5)_2$ moieties, separated by

Figure. Representation of the structures of the ions $[Co(C_5H_5)_2]^+$ (a) and $[Ti(C_5H_5)Cl_3]^-$ (b), showing the numbering scheme

van der Waals contacts. The cobalt atom is sandwiched between virtually parallel, eclipsed cyclopentadienyl residues, in the manner typical of metallocenes. The distances Co–C(5*) and Co–C(6*) have a mean value of 1.631(4) Å [the asterisked positions in Tables 1 and 2 denote the centroids of the cyclopentadienyl rings], and the C(5*)-Co–C(6*) arrangement is virtually linear. This length compares with independent Co–C(*) distances of 1.623 and 1.624 Å in $[Co(C_5H_5)_2]$ -[2-[{(Me₃Si)₂CH}C]B₁₀H₁₆],⁴ 1.651 Å in $[Co(C_5M_5)_2]$ -[C₂(CN)₄],⁵ and 1.653 Å in $[Co(C_5M_5)_2]$ [(NC)₂CC₆H₄C-(CN)₂],⁶ which all contain cobaltocene(1 +) ions. The distances are all shorter than the corresponding distance in $[Co(C_5H_5)_2]$, 1.726 Å,⁷ and this supports the contention that our crystals contain $[Co(C_5H_5)_2]^+$ ions rather than the neutral species.

For the $Ti(C_5H_5)Cl_3$, moiety, the co-ordination pattern is essentially a three-legged piano-stool arrangement, as found for $[Ti(C_5H_5)Cl_3]$.⁸ However, the bond distances are all slightly longer than in the titanium(IV) molecule, our mean Ti-Cl separation being 2.349(8) Å compared with 2.222(8) for $[Ti(C_5H_5)Cl_3]$, and Ti-C(4*) is 2.027 compared to 2.01 Å in $[Ti(C_5H_5)Cl_3]$. These distances are fully consistent with our formulation of a titanium(III) anion $[Ti(C_5H_5)Cl_3]^-$. Tables 1 and 2 contain final atomic parameters, and selected molecular dimensions.

Thus, the crystal appears best formulated as $[Co(C_5H_5)_2]$ - $[Ti(C_5H_5)Cl_3]$, containing the hitherto unreported $[Ti(C_5H_5)-Cl_3]^-$ anion, inconsistent with the suggestions of Symons and Mishra² but in full agreement with the findings of Morse *et al.*³ concerning the closely related $[Ti(C_5H_4Me)Cl_3]^-$, based upon e.s.r. studies.

[†] Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1989, Issue 1, pp. xvii—xx.

Table 1. I	Final atomic	co-ordinate	s (fractional	$\times 10^{4}$)	with estimated
standard	deviations	(e.s.d.s) in	parenthese	s for	$[Co(C_5H_5)_2]$ -
[Ti(C ₅ H ₅])Cl ₃]				

Atom	x	У	Z			
Ti	3 696.5(3)	3 239.5(4)	8 308.0(4)			
Cl(1)	2 323.6(5)	2 447.1(6)	6 781.7(7)			
Cl(2)	4 246.3(5)	4 705.1(7)	7 100.3(7)			
Cl(3)	2 870.5(6)	4 652.9(7)	9 214.3(6)			
C(41)	4 643(3)	2 488(4)	10 201(3)			
C(42)	5 274(2)	2 759(3)	9 552(4)			
C(43)	5 076(2)	1 902(4)	8 583(3)			
C(44)	4 329(3)	1 123(3)	8 644(3)			
C(45)	4 054(3)	1 495(4)	9 634(4)			
Co	1 468.1(2)	-2 495.9(3)	6 471.1(3)			
C(51)	2 408(2)	-1822(3)	8 060(3)			
C(52)	2 916(2)	-2305(3)	7 333(3)			
C(53)	2 638(2)	-1 619(3)	6 242(3)			
C(54)	1 940(3)	-707(3)	6 299(3)			
C(55)	1 799(2)	-838(3)	7 442(3)			
C(61)	946(3)	-3 691(4)	5 059(3)			
C(62)	1 170(3)	-4 376(3)	6 119(4)			
C(63)	620(4)	-3881(5)	6 791(3)			
C(64)	60(3)	-2902(5)	6 127(6)			
C(65)	264(3)	-2 802(4)	5 060(4)			
Calculated co-ordinates of the centres of the $C_{5}H_{5}$ rings						
C(4*)	4 675	1 953	9 323			
C(5*)	2 340	-1458	7 075			
C(6*)	612	-3 531	5 831			

We determined the e.s.r. spectrum of powdered and frozen solution (CH_2Cl_2) samples of $[Co(C_5H_5)_2][Ti(C_5H_5)Cl_3]$ at 4 K and have compared them with that assigned to $[Ti(C_5H_5)-Cl_3]^-$ and reported for $[Ti(C_5H_4Me)Cl_3]^-$. Symons and Mishra² reported a 'nearly axial' spectrum for powdered $[Ti(C_5H_5)Cl_3]^-$ at 77 K, with g = 1.962, 1.962, and 1.945, $g_{av} = 1.956$. Morse *et al.*³ show a very different spectrum for powdered $[Co(C_5H_5)_2][Ti(C_5H_4Me)Cl_3]$ at 4 K with invariant $g_{\parallel} = 1.733$ and $g_{\perp} = 1.938$, plus minor signals which varied in intensity with sample rotation. Our data, which give $g_{\parallel} = 1.743$ and $g_{\perp} = 1.973$ under similar conditions, are much more like the latter than the former.

We also confirmed that $[Ti(C_5H_5)Cl_3]^-$, like $[Ti(C_5H_4Me)-Cl_3]^-$, is stable in solution. An n.m.r. spectrum of 1:1 mixture of $[Co(C_5H_5)_2]$ and $[Ti(C_5H_5)Cl_3]$ in solution at *ca.* 25 °C showed a strong sharp singlet at δ 6.13, assigned to cobaltocene(1+) protons, and a very broad signal centred at about 27.5 and with a width of about 4 p.p.m., of the right intensity to correspond with $[Ti(C_5H_5)Cl_3]^-$. Morse *et al.*³ report a similar signal at about δ 29 for their species in CD_2Cl_2 at 30 °C.

It is clear that species $[Ti(C_5R_5)Cl_3]^-$ (R = H or alkyl) are stable in the solid state and in solution in CH₂Cl₂.

Experimental

All compounds were manipulated under pure dry dinitrogen in dry degassed solvents. The following spectrometers were used: JEOL GSX-270 for n.m.r., Bruker ER 200-D for e.s.r. The starting materials, $[Co(C_5H_5)_2]^9$ and $[Ti(C_5H_5)Cl_3]$,¹⁰ were prepared by literature methods.

 $Bis(\eta^5$ -cyclopentadienyl)cobalt(1+) trichloro(η^5 -cyclopentadienyl)titanate(1-).—Solutions of cobaltocene (0.38 g, 2 mmol) in CH₂Cl₂ (20 cm³) and trichloro(cyclopentadienyl)titanium (0.45 g, 2 mmol) in CH₂Cl₂ (20 cm³) were mixed under N₂. The resulting dark green solution was stirred for 1 h. The

Table 2. Dimensions about the metal atoms (bond lengths in Å, angles in °) with e.s.d.s in parentheses

Ti-Cl(1)	3.250(1)	Ti-C(43)	2.361(3)
Ti-Cl(2)	2.364(1)	Ti-C(44)	2.360(3)
Ti-Cl(3)	2.334(1)	Ti-C(45)	2.324(3)
Ti-C(41)	2.325(3)	Ti-C(4*)	2.027
Ti-C(42)	2.332(3)	. ,	
Co-C(51)	2.037(3)	Co-C(61)	2.002(3)
Co-C(52)	2.021(3)	Co-C(62)	2.010(3)
Co-C(53)	2.004(3)	Co-C(63)	1.994(3)
CoC(54)	2.006(3)	Co-C(64)	1.986(3)
Co-C(55)	2.028(3)	Co-C(65)	2.002(3)
Co-C(5*)	1.635	Co-C(6*)	1.627
Cl(1)-Ti-Cl(2)	97.9(1)	$Cl(1) - Ti - C(4^*)$	118.4
Cl(1) - Ti - Cl(3)	97.5(1)	Cl(2)-Ti-C(4*)	117.7
Cl(2)-Ti-Cl(3)	100.1(1)	Cl(3)-Ti-C(4*)	120.8
C(5*)-Co-C(6*)	178.1		

solvent was then removed under vacuum to leave a green solid which was washed with toluene $(2 \times 5 \text{ cm}^3)$ and dried *in vacuo*. The solid was extracted with CH₂Cl₂ (5 × 10 cm³), the extract was filtered and taken to dryness, affording analytically pure $[Co(C_5H_5)_2][Ti(C_5H_5)Cl_3]$ (yield 50%). Single crystals can be obtained by layering a concentrated solution of $[Co(C_5H_5)_2]$ - $[Ti(C_5H_5)Cl_3]$ in CH₂Cl₂ with hexane (Found: C, 44.1; H, 3.40. C₁₅H₁₅Cl₃CoTi requires C, 44.1; H, 3.65%). I.r. spectrum (Nujol and hexachlorobutadiene mulls): 3 936w, 3 102m, 1 815w, 1 720w, 1 638w, 1 415s, 1 262s, 1 112s, 1 018vs, 942w, 865vs, 805vs,br, 740ms, 667w, 603w, 501m, 461br,vs, 434s, 417s, and 391br,vs cm⁻¹.

X-Ray Crystallographic Analysis of $[Co(C_5H_5)_2][Ti(C_5H_5)-Cl_3]$.—Crystal data. $C_{15}H_{15}Cl_3CoTi$, M = 408.5, monoclinic, a = 14.404(1), b = 10.365(1), c = 11.591(1) Å, β = 108.256(7)°, U = 1 643.4 Å³, space group $P2_1/a$ (equivalent to no. 14), Z = 4, D_c = 1.651 g cm⁻³, F(000) = 820, $\mu(Mo-K_{\alpha}) = 19.7$ cm⁻¹, $\lambda(Mo-K_{\overline{\alpha}}) = 0.710$ 69 Å.

Crystals of this sample were very air-sensitive dark green prisms. One, *ca.* $0.33 \times 0.38 \times 0.62$ mm, was sealed under dinitrogen in a capillary, and after preliminary photographic examination was transferred to an Enraf-Nonius CAD4 diffractometer (monochromated molybdenum radiation) for measurement of cell parameters (from the centred settings of 25 reflections in each of four diffracting orientations) and diffraction intensities (to $\theta_{max.} = 25^{\circ}$). Two reflections monitored throughout the data collection showed no significant changes in intensity. During processing, corrections were made for Lorentz-polarisation effects, absorption (by semiempirical ψ -scan methods), and negative intensities (by Bayesian statistical methods).

Data for 2 879 unique reflections (2 518 of which had $I > 2\sigma_t$) were input to the SHELX program system for structure determination¹¹ (which was by the heavy-atom method) and refinement (by full-matrix, least-squares methods). Convergence was reached at R = 0.035, $R' = 0.038^{11}$ for all 2 879 data weighted $w = \sigma_F^{-2}$. Hydrogen atoms were included in idealised positions, with thermal parameters riding on those of their bonded carbon atoms. A final difference map showed features in the range -0.55 to +0.29 e Å⁻³ only.

Scattering curves for neutral atoms were taken from ref. 12. All computing was carried out on a MicroVAX II machine, using programs noted above and in Table 4 of ref. 13.

Additional material available from the Cambridge Crystallographic Data Centre comprises H-atom co-ordinates, thermal parameters, and remaining bond lengths and angles.

Acknowledgements

We thank Mr. C. J. Macdonald for analyses and n.m.r. spectroscopy, and Dr. D. J. Lowe for e.s.r. spectroscopy and the E.E.C. for support under Grant ST2* (M. J-T.).

References

- 1 D. L. Hughes, G. J. Leigh, and D. G. Walker, J. Chem. Soc., Dalton Trans., 1988, 1153.
- 2 M. C. R. Symons and S. P. Mishra, J. Chem. Soc., Dalton Trans., 1981, 2258.
- 3 D. B. Morse, D. N. Hendrickson, T. B. Rauchfuss, and S. R. Wilson, Organometallics, 1988, 7, 496.

- 5 D. A. Dixon and J. S. Miller, J. Am. Chem. Soc., 1987, 109, 3656.
- 6 J. S. Miller, J. A. Zhang, W. M. Reiff, D. A. Dixon, L. D. Preston, A. H. Reis, E. Gebert, M. Extine, J. Troup, A. J. Epstein, and M. D. Ward, J. Phys. Chem., 1987, 91, 4344.
- 7 W. Bünder and E. Weiss, J. Organomet. Chem., 1975, 92, 65.
- 8 L. M. Engelhardt, and R. I. Paspergo, C. L. Raston, and A. H. White, Organometallics, 1984, 3, 18.
- 9 R. B. King, Organomet. Synth., 1965, 1, 64.
- 10 R. D. Gorsich, J. Am. Chem. Soc., 1960, 82, 4211.
- 11 G. M. Sheldrick SHELX 76 Program for Crystal Structure Determination, University of Cambridge, 1976.
- 12 'International Tables for X-Ray Crystallography,' Kynoch Press, Birmingham, 1974, vol. 4, pp. 99 and 149.
- 13 S. N. Anderson, R. L. Richards, and D. L. Hughes, J. Chem. Soc., Dalton Trans., 1986, 245.

Received 13th March 1989; Paper 9/01081E